Periodic Homogenization of Inviscid G-equation for Incompressible Flows
نویسندگان
چکیده
G-equations are popular front propagation models in combustion literature and describe the front motion law of normal velocity equal to a constant plus the normal projection of fluid velocity. G-equations are Hamilton-Jacobi equations with convex but non-coercive Hamiltonians. We prove homogenization of inviscid G-equation for space periodic incompressible flows. This extends a two space dimensional result in [26]. We construct approximate correctors to bypass the lack of compactness due to the non-coercive Hamiltonian. The existence of approximate correctors rely on a local reachability property of the controlled flow trajectory as well as incompressibility of the flow. Homogenization then follows from comparison principle and the perturbed test function method. The effective Hamiltonian is convex and homogeneous of degree one. It is also coercive if we further assume that the flow is mean zero.
منابع مشابه
Periodic Homogenization of the Inviscid G-equation for Incompressible Flows
G-equations are popular front propagation models in combustion literature and describe the front motion law of normal velocity equal to a constant plus the normal projection of fluid velocity. G-equations are Hamilton-Jacobi equations with convex but non-coercive Hamiltonians. We prove homogenization of the inviscid G-equation for space periodic incompressible flows. This extends a two space di...
متن کاملPeriodic homogenization of G-equations and viscosity effects
G-equations are well-known front propagation models in combustion and are Hamilton–Jacobi type equations with convex but non-coercive Hamiltonians. Viscous G-equations arise from numerical discretization or modeling dissipative mechanisms. Although viscosity helps to overcome non-coercivity, we prove homogenization of an inviscid G-equation based on approximate correctors and attainability of c...
متن کاملA robust, colocated, implicit algorithm for direct numerical simulation of compressible, turbulent flows
A non-dissipative, robust, implicit algorithm is proposed for direct numerical and large-eddy simulation of compressible turbulent flows. The algorithm addresses the problems caused by low Mach numbers and under-resolved high Reynolds numbers. It colocates variables in space to allow easy extension to unstructured grids, and discretely conserves mass, momentum and total energy. The Navier–Stoke...
متن کاملSharp asymptotic growth laws of turbulent flame speeds in cellular flows by inviscid Hamilton-Jacobi models
We study the large time asymptotic speeds (turbulent flame speeds sT ) of the simplified Hamilton-Jacobi (HJ) models arising in turbulent combustion. One HJ model is G-equation describing the front motion law in the form of local normal velocity equal to a constant (laminar speed) plus the normal projection of fluid velocity. In level set formulation, G-equations are HJ equations with convex (L...
متن کاملThe Spectra of the Oscillating Shear Flows
We study the spectral problems for the spatially periodic flows of inviscid incompressible fluid. The basic flows under consideration are the shear flows whose profiles oscillate on high frequencies. For such flows, we present asymptotic expansions of the unstable eigenvalues in the case when the limit spectral problem has multiple eigenvalues.
متن کامل